Multi-Scale Modeling of Spin Dynamics in Molecular Semi-Conductors

Erik R. McNellis

Research Team Leader Johannes Gutenberg Universität Mainz

April 10th, 2019 ITN SEPOMO | NWE4 Mons, Belgium

European Research Council

Who We Are - ERC Synergy Grant

- ‣ ERC Synergy Grant focused on **organic spintronics**
- Interdisciplinary, joining theory / experiment / physics / chemistry / materials science

European Research Council

‣ PIs

- ‣ H. Sirringhaus, Cambridge
- ‣ J. Sinova, JGU Mainz
- ‣ I. McCulloch, Imperial College
- ‣ J. Wunderlich, Hitachi Cambridge
- ‣ Outside Synergy Grant, groups of
	- ‣ D. Andrienko, MPIP Mainz
	- ‣ D. Beljonne, University of Mons

Who We Are - Theory Team

Prof. Sergei A. Egorov

Dr. Reza Mahani

M. Sc. Uday Chopra

M. Sc. Sebastian Müller

https://www.sinova-group.physik.uni-mainz.de/research/organic-spintronics/

Why First-Principles, Multi-Scale Modeling?

- 1. Z. H. Xiong, D. Wu, Z. V. Vardeny and J. Shi, Nature 427, 821 (2004)
- 2. S. W. Jiang, S. Liu, P. Wang, Z. Z. Luan et al, Phys. Rev. Lett. 115, 086601 (2015)

Why First-Principles, Multi-Scale Modeling?

- ‣ 'Fruit-fly' example: characteristic Alq3 spin dynamics **varies hugely** depending on e.g.
	- ‣ morphology
	- temperature
	- ‣ spin (charge) density

Molecular vibrations³

- 1. Z. H. Xiong, D. Wu, Z. V. Vardeny and J. Shi, Nature 427, 821 (2004)
- 2. S. W. Jiang, S. Liu, P. Wang, Z. Z. Luan et al, Phys. Rev. Lett. 115, 086601 (2015)
	- 3. L. Nuccio, M. Willis, L. Schulz, S. Fratini et al, Phys. Rev. Lett. 110, 216602 (2013)

Why First-Principles, Multi-Scale Modeling?

- ‣ 'Fruit-fly' example: characteristic Alq3 spin dynamics **varies hugely** depending on e.g.
	- ‣ morphology
	- ‣ temperature
	- ‣ spin (charge) density

Spin exchange2

- ‣ Need modeling **consistently accurate** across spintronic device designs / operating regimes
- ‣ Phenomenological models struggle

Molecular vibrations³

-
- 1. Z. H. Xiong, D. Wu, Z. V. Vardeny and J. Shi, Nature 427, 821 (2004)
- 2. S. W. Jiang, S. Liu, P. Wang, Z. Z. Luan et al, Phys. Rev. Lett. 115, 086601 (2015)
- 3. L. Nuccio, M. Willis, L. Schulz, S. Fratini et al, Phys. Rev. Lett. 110, 216602 (2013)

- ‣ Molecular / organic semi-conductors characterized by
	- lower order / crystallinity, charge mobility (/ hopping frequency?)
	- weaker local fields, spin-orbit coupling (more 'orbits' relevant, 'SOCs'?)
	- ‣ larger morphological variation / anisotropy

- ‣ Molecular / organic semi-conductors characterized by
	- lower order / crystallinity, charge mobility (/ hopping frequency?)
	- ‣ weaker local fields, spin-orbit coupling (more 'orbits' relevant, 'SOCs'?)
	- larger morphological variation / anisotropy
- ‣ For hopping charge transport, no inter-system crossings **five spin relaxation mechanisms**
- 1. Spin dipole:
	- orients spins (anti-) parallel for (perpendicular) parallel separation vector **R**
	- ‣ ignored in solid state, **can** matter in organics (short **R**)
	- ‣ modeled classically

Molecular Spin Relaxation Mechanisms

- ‣ Molecular / organic semi-conductors characterized by
	- lower order / crystallinity, charge mobility (/ hopping frequency?)
	- weaker local fields, spin-orbit coupling (more 'orbits' relevant, 'SOCs'?)
	- larger morphological variation / anisotropy
- ‣ For hopping charge transport, no inter-system crossings **five spin relaxation mechanisms**
- 1. Spin dipole:
	- orients spins (anti-) parallel for (perpendicular) parallel separation vector **R**
	- ‣ ignored in solid state, **can** matter in organics (short **R**)
	- ‣ modeled classically
- 2. Spin exchange: spontaneous inversion of neighboring spins
- 3. Hyperfine fields: due to electronic / nuclear spin interaction
- 4. Hop-flipping: scattering between mixed spin states \rightarrow spin flip
- 5. Thermal (spin-phonon coupling): phonon scattering + SOC

Molecular Spin Relaxation Mechanisms

- ‣ Molecular / organic semi-conductors characterized by
	- lower order / crystallinity, charge mobility (/ hopping frequency?)
	- weaker local fields, spin-orbit coupling (more 'orbits' relevant, 'SOCs'?)
	- ‣ larger morphological variation / anisotropy
- ‣ For hopping charge transport, no inter-system crossings **five spin relaxation mechanisms**
- 1. Spin dipole:
	- orients spins (anti-) parallel for (perpendicular) parallel separation vector **R**
	- ‣ ignored in solid state, **can** matter in organics (short **R**)
	- ‣ modeled classically
- 2. Spin exchange: spontaneous inversion of neighboring spins
- 3. Hyperfine fields: due to electronic / nuclear spin interaction
- Hop-flipping: scattering between mixed spin states \rightarrow spin flip
- 5. Thermal (spin-phonon coupling): phonon scattering + SOC

Least explored in this context

"The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to **equations much too complicated to be soluble***. It therefore becomes desirable that* **approximate practical methods** *of applying quantum mechanics should be developed, which can lead to an explanation of the main features of complex atomic systems* **without too much computation.***"*

1. P. A. M. Dirac, Proc. R. Soc. Lond. A 123, 714 (1929)

- ‣ A quantum wave function contains a **lot of information**. Ideally, we
	- ✓ want **all necessary** information (accuracy)
	- ✓ do **not** want to **filter** for specific information (transferability)
	- ✓ do **not** want to calculate **too much** (scalability)

First-Principles Modeling in a Nutshell

- ‣ A quantum wave function contains a **lot of information**. Ideally, we
	- ✓ want **all necessary** information (accuracy)
	- ✓ do **not** want to **filter** for specific information (transferability)
	- ✓ do **not** want to calculate **too much** (scalability)
- ✗ *Contradiction*

Transferability

- ‣ A quantum wave function contains a **lot of information**. Ideally, we
	- ✓ want **all necessary** information (accuracy)
	- ✓ do **not** want to **filter** for specific information (transferability)
	- ✓ do **not** want to calculate **too much** (scalability)
- ✗ *Contradiction*

Transferability

- ‣ Density Functional Theory (DFT): correction potential for classical mean-field
- ‣ Strikes good **balance** between all three popular method

- ‣ **Perfect** theoretical material model:
	- ✓ From atomic- to material-relevant scale
	- ✓ No empiricism
	- ✓ Accurate, transferable
	- ✓ Computable

Multi-Scale Modeling of Materials

- ‣ **Perfect** theoretical material model:
	- ✓ From atomic- to material-relevant scale
	- ✓ No empiricism
	- ✓ Accurate, transferable
	- ✓ Computable
- ‣ **First-Principles Modeling:**
	- ‣ Accurate for single component, impractical for material

Multi-Scale Modeling of Materials

- ‣ **Perfect** theoretical material model:
	- ✓ From atomic- to material-relevant scale
	- ✓ No empiricism
	- ✓ Accurate, transferable
	- ✓ Computable
- ‣ **First-Principles Modeling:**
	- ‣ Accurate for single component, impractical for material

‣ **Multi-Scale Modeling:**

- ‣ coarse-grained model at large scale
- ‣ most important first-principles, atomistic information ideally retained
- ‣ *balance* of accuracy and computational cost

Multi-Scale Modeling of Materials

- ‣ **Perfect** theoretical material model:
	- ✓ From atomic- to material-relevant scale
	- ✓ No empiricism
	- ✓ Accurate, transferable
	- ✓ Computable
- ‣ **First-Principles Modeling:**
	- ‣ Accurate for single component, impractical for material

‣ **Multi-Scale Modeling:**

- ‣ coarse-grained model at large scale
- ‣ most important first-principles, atomistic information ideally retained
- ‣ *balance* of accuracy and computational cost

Target: 1st-principles spin dynamics in **realistic molecular semi-conductor** models

Target: 1st-principles spin dynamics in **realistic molecular semi-conductor** models

ITN SEPOMO | NWE4 Mons, Belgium - Erik R. McNellis 9

Spin Exchange

- ‣ *Exchange:* neighboring spin inversion, unchanged charge state
- ‣ Molecular wavefunction decays rapidly, exponentially in interstitial region - coupling also
- \blacktriangleright Two-body coupling $J_{ij} =$ $E_{\uparrow\downarrow}-E_{\uparrow\uparrow}$ $4\langle S_i \rangle \langle S_j \rangle$
- ‣ from constrained DFT1 *E*↑↓, *E*↑↑, ⟨*S*⟩
- ‣ Coupling as function of polaron separation fitted to exponential function2

Spin Exchange

- 1. I. Rudra, Q. Wu and T. Van Voorhis, J. Chem. Phys. 124, 24103 (2006)
- 2. A. R. O'Dea, A. F. Curtis, N. J. B. Green, C. R. Tinunel and P. J. Hore, J. Phys. Chem. A 109, 869 (2005)

- ‣ *Hyperfine coupling* (HFC): electronic, nuclear spin interaction
	- ‣ vanishes for 'closed-shell' molecules
	- organic elements often nuclear spin free
- ‣ **hydrogens, ionic** molecules main source

(External + Local Hyperfine Field) ⋅ *g*-tensor

1. S. Schott, ERM, C. B. Nielsen, H.-Y. Chen, …, J. Sinova, and H. Sirringhaus, Nat. Commun. 8, 15200 (2017). 2. ERM, S. Schott, H. Sirringhaus, and J. Sinova, Phys. Rev. Mater. 2, 074405 (2018)

Hyperfine Field (HFI) / *g*-Tensor

- ‣ *Hyperfine coupling* (HFC): electronic, nuclear spin interaction
	- ‣ vanishes for 'closed-shell' molecules
	- organic elements often nuclear spin free
- ‣ **hydrogens, ionic** molecules main source
- ‣ Gyromagnetic coupling ("*g*-") tensor shift: deviation from free electron value
- Depends on spin-orbit coupling (SOC)
- \blacktriangleright Modeling, experiments:^{1,2} overlap of electronic spin density with
	- \triangleright nuclear spin \rightarrow HFI
	- \rightarrow orbital angular momentum \rightarrow *g*-tensor

‣ Spin density tuned via **push-pull chemistry** *^g*-tensor tuning2

1. S. Schott, ERM, C. B. Nielsen, H.-Y. Chen, …, J. Sinova, and H. Sirringhaus, Nat. Commun. 8, 15200 (2017). 2. ERM, S. Schott, H. Sirringhaus, and J. Sinova, Phys. Rev. Mater. 2, 074405 (2018)

(External + Local Hyperfine Field) ⋅ *g*-tensor

• Main SOC effect of band transport in traditional semi-conductor materials: scattering between **mixed spin states** – **engleseus** mechanism molecular band Main SOC effect of $\frac{pana}{hopping}$ transport in spatial Elliott-Yafet^{1,2} analogous

- 1.R. J. Elliott, Phys. Rev. 96, 266 (1954)
- 2. Y. Yafet, Adv. Res. Appl. 14, 1 (1963)
- 3. C. A. Masmanidis, H. H. Jaffe, and R. L. Ellis, J. Phys. Chem. 79, 2052 (1975)

Spin-Mixing ('Hop-Flip') in Semi-Conductors

Spin-Mixing ('Hop-Flip') in Semi-Conductors

- $\rightarrow \gamma$ is change in norm of *spin-mixed, perturbed* molecular states $\langle \psi_0 + | \psi_0 + \rangle = 1 + \gamma^2 = 1 + \gamma_{\uparrow \uparrow}^2 + \gamma_{\uparrow \downarrow}^2$
- ► Spin relaxation α hopping frequency \cdot γ^2

1. Z. G. Yu, Phys. Rev. B 85, 115201 (2012) 2. U. Chopra, S. Shambhawi, S. A. Egorov, J. Sinova, and ERM, Adv. Func. Mater. (submitted)

- $\rightarrow \gamma$ is change in norm of *spin-mixed, perturbed* molecular states
- ► Spin relaxation α hopping frequency \cdot γ^2
- Original formulation¹:
- Restricted wavefunction
- χ Empirical SO constants → minimal basis set ≤ **p**-functions
	- \rightarrow only light molecules, poorly
- ✗ No understanding of xcapproximation influence

1. Z. G. Yu, Phys. Rev. B 85, 115201 (2012) 2. U. Chopra, S. Shambhawi, S. A. Egorov, J. Sinova, and ERM, Adv. Func. Mater. (submitted)

 $\langle \psi_0 + | \psi_0 + \rangle = 1 + \gamma^2 = 1 + \gamma_{\uparrow \uparrow}^2 + \gamma_{\uparrow \downarrow}^2$

- $\rightarrow \gamma$ is change in norm of *spin-mixed, perturbed* molecular states $\langle \psi_0 + | \psi_0 + \rangle = 1 + \gamma^2 = 1 + \gamma_{\uparrow \uparrow}^2 + \gamma_{\uparrow \downarrow}^2$
- ► Spin relaxation α hopping frequency \cdot γ^2
- Original formulation¹:
- Restricted wavefunction
- χ Empirical SO constants → minimal basis set ≤ **p**-functions
	- \rightarrow only light molecules, poorly
- ✗ No understanding of xcapproximation influence
- Our generalization:²
- ✓ Unrestricted wavefunction
- ✓ Any basis set
- ✓ Any molecule
- ✓ Any single-determinant level of theory, (e.g., DFT)

1. Z. G. Yu, Phys. Rev. B 85, 115201 (2012) 2. U. Chopra, S. Shambhawi, S. A. Egorov, J. Sinova, and ERM, Adv. Func. Mater. (submitted)

- $\rightarrow \gamma$ is change in norm of *spin-mixed, perturbed* molecular states $\langle \psi_0 + | \psi_0 + \rangle = 1 + \gamma^2 = 1 + \gamma_{\uparrow \uparrow}^2 + \gamma_{\uparrow \downarrow}^2$
- ► Spin relaxation α hopping frequency \cdot γ^2
- Original formulation¹:
- Restricted wavefunction
- χ Empirical SO constants → minimal basis set ≤ **p**-functions
	- \rightarrow only light molecules, poorly
- ✗ No understanding of xcapproximation influence
- Our generalization:²
- ✓ Unrestricted wavefunction
- ✓ Any basis set
- ✓ Any molecule
- ✓ Any single-determinant level of theory, (e.g., DFT)
- \triangleright We have reformulated γ with increased
	- accuracy
	- **•** transferability
- \triangleright ... while maintaining scalability?

1. Z. G. Yu, Phys. Rev. B 85, 115201 (2012)

2. U. Chopra, S. Shambhawi, S. A. Egorov, J. Sinova, and ERM, Adv. Func. Mater. (submitted)

Effects of Generalization: Model Systems

- \triangleright New cos² dip in γ^2 **S**z rotation curve in benzene (cf. (**L**・**S**)2)
- ‣ More pronounced for stronger SOC (thiophene)

Effects of Generalization: Model Systems

 \vec{s}_z

Z

 L_{Z}

X

 \neq

 2 [x 10⁻⁸] (Hole)

 $2.70\frac{1}{0}$

0 20 40 60 80 100 120 140 160 180

 θ

2.80

2.90

5.30

5.40

7.05

7.20

PW92

PBE0

HF

7.35

Y

Hole **Electron** ------ 7.35

- \triangleright New cos² dip in γ^2 **S**z rotation curve in benzene (cf. (**L**・**S**)2)
- ‣ More pronounced for stronger SOC (thiophene)
- \triangleright Better DFT functionals = large quantitative corrections

4.89

4.91

4.93

⇥ 2

 2^{2} [x 10⁻⁸] (Electron)

6.35

6.38

7.20

7.28

Effects of Generalization: Model Systems

 S_{Z}

Y

- \triangleright New cos² dip in γ^2 **S**_z rotation curve in benzene (cf. (**L**・**S**)2)
- ‣ More pronounced for stronger SOC (thiophene)
- \triangleright Better DFT functionals = large quantitative corrections
- $\rightarrow \gamma$ (SOC) depends on relative orientation of π-orbital planes
- \triangleright Effect qualitatively and quantitatively improved for biphenyl twist 1e−07

Accurate Spin Transport in Organic Polymers

- \triangleright Spin diffusion lengths L_s of \sim **1200, 600** (nm) in semicrystalline PBTTT, P3HT polymers1
- ▶ Simple spin diffusion model², generalized γ predicts L_s within experimental errors

1. Wang, Shu-Jen, …, R. Mahani, U. Chopra, ERM, et al, Nat. Electron. 2, 98 (2019) 2. Z. G. Yu, De Gruyter Open: Nanoelectronics and Spintronics 1, 1 (2015)

Accurate Spin Transport in Organic Polymers

- \triangleright Spin diffusion lengths L_s of \sim **1200, 600** (nm) in semicrystalline PBTTT, P3HT polymers1
- ▶ Simple spin diffusion model², generalized γ predicts L_s within experimental errors
- Weak other mechanisms, locally high hopping rates $\rightarrow \gamma$ completely determines L_s
- \triangleright Variation in γ , L_s because of **varying π orbital planes** along chain
- ! Want long Ls? **Flatten** your π-conjugated polymer

1. Wang, Shu-Jen, …, R. Mahani, U. Chopra, ERM, et al, Nat. Electron. 2, 98 (2019)

2. Z. G. Yu, De Gruyter Open: Nanoelectronics and Spintronics 1, 1 (2015)

As a High-Throughput Computational Tool

doi:10.1038/nature12909

‣ **High-throughput**: characteristic property + robust modeling technique = huge scans of candidate molecules (e.g. batteries¹, photovoltaics²)

LETTER

A metal-free organic-inorganic aqueous flow battery

Brian Huskinson¹, Michael P. Marshak^{1,2}, Changwon Suh², Süleyman Er^{2,3}, Michael R. Gerhardt¹, Cooper J. Galvin², Xudong Chen², Alán Aspuru-Guzik², Roy G. Gordon^{1,2} & Michael J. Aziz¹

1. B. Huskinson et al., Nature 505, 195 (2014) 2. J. Hachmann et al., J. Phys. Chem. Lett. 2, 2241 (2011)

1. S. Schott, U. Chopra, V. Lemaur, A. Melnyk, Yoan Olivier, …, ERM, D. Andrienko, D. Beljonne, J. Sinova, and H. Sirringhaus Nat. Physics. (accepted) 2. U. Chopra, S. A. Egorov, J. Sinova, and ERM, J. Phys. Chem. C, (submitted)

As a High-Throughput Computational Tool

doi:10.1038/nature12909

‣ **High-throughput**: characteristic property + robust modeling technique = huge scans of candidate molecules (e.g. batteries¹, photovoltaics²)

LETTER

A metal-free organic-inorganic aqueous flow battery Brian<mark>[Huskinson¹*,</mark>]Michael P. Marshak^{1,24}, Changwon Suh², Süleyman Er^{2,3}, Michael R. Gerhardt¹, Cooper J. Galvin²,
Xudong Chen², Alán Aspuru-Guzik², Roy G. Gordon^{1,2} & Michael J. Aziz¹

-
- \triangleright Our γ calculation technique
	- ✓ relies on standard DFT
	- \checkmark is highly task parallel
	- \checkmark is highly automatable
- $\rightarrow \gamma$ calculations of **every** state in polymer morphologies possible
- ‣ Statistical picture of polymer spin relaxation otherwise unattainable1,2

- 1. S. Schott, U. Chopra, V. Lemaur, A. Melnyk, Yoan Olivier, …, ERM, D. Andrienko, D. Beljonne, J. Sinova, and H. Sirringhaus Nat. Physics. (accepted)
	-
- 2. U. Chopra, S. A. Egorov, J. Sinova, and ERM, J. Phys. Chem. C, (submitted)

The Harvard Clean Energy Project: Large-Scale Computational Screening and Design of Organic Photovoltaics on the World **Community Grid**

PHYSICAL CHEMISTRY Letters

Johannes Hachmann,** Roberto Olivares-Amaya,[†] Sule Atahan-Evrenk,* Carlos Amador-Bedolla,^{†,*}
Roel S. Sánchez-Carrera,^{|1.†} Aryeh Gold-Parker,^{*} Leslie Vogt,[†] Anna M. Brockway,⁵ and Alán Aspuru-Guzik^{1,*}

1. B. Huskinson et al., Nature 505, 195 (2014) 2. J. Hachmann et al., J. Phys. Chem. Lett. 2, 2241 (2011)

1. K. Bader et al., Chem. Comm. 52, 3623 (2016) 2. U. Chopra, S. Shambhawi, S. A. Egorov, J. Sinova, and ERM, Adv. Func. Mater. (submitted)

ITN SEPOMO | NWE4 Mons, Belgium - Erik R. McNellis 17

 γ Transferable to Metal-Phthalocyanines (MPcs)

- \triangleright Bader¹ et al. measure longitudinal spin relaxation times T_1 in dissolved MPcs
- ‣ MPcs too complex for old formulation

ITN SEPOMO | NWE4 Mons, Belgium - Erik R. McNellis 17

Transferable to Metal-Phthalocyanines (MPcs)

- \triangleright Bader¹ et al. measure longitudinal spin relaxation times T_1 in dissolved MPcs
- ‣ MPcs too complex for old formulation
- $T_1 \propto$ If spin relaxes through charge hopping,
- ► Fit of $T_1 \approx \kappa / \gamma^2$ predicts experiment to
	- **~ 40 %** over **4 orders** of magnitude

1. K. Bader et al., Chem. Comm. 52, 3623 (2016) 2. U. Chopra, S. Shambhawi, S. A. Egorov, J. Sinova, and ERM, Adv. Func. Mater. (submitted)

 $M = VO$, Mn, Co, Cu

ITN SEPOMO | NWE4 Mons, Belgium - Erik R. McNellis 17

▶ Bader¹ et al. measure longitudinal spin relaxation times T_1 in dissolved MPcs

‣ MPcs too complex for old formulation

- If spin relaxes through charge hopping,
- ► Fit of $T_1 \approx \kappa / \gamma^2$ predicts experiment to **~ 40 %** over **4 orders** of magnitude
- ! Spin relaxation indistinguishable mix of (maybe) hopping and **thermal** effects
- also $\propto \hat {\mathrm{H}}_{\mathrm{SOC}}^2$ fit still works $\sqrt{\ }$ Thermal (spin-phonon coupling)
- ✓ SOC highly accurate

 \triangleright Can we do equally well with thermal effects with method to γ^2 standard?

1. K. Bader et al., Chem. Comm. 52, 3623 (2016)

2. U. Chopra, S. Shambhawi, S. A. Egorov, J. Sinova, and ERM, Adv. Func. Mater. (submitted)

 $=$ VO, Mn, Co, Cu

Spin-Phonon Coupling

- ‣ SOC coupling to a virtual state of opposite spin, resonant with zero-field Zeeman split via electron-phonon coupling
- ‣ Generally requires multiple phonons for resonance
- ‣ *Elastic*: spin relaxes on isolated, thermally excited molecule
- ‣ *Inelastic*: phonon absorption / emission

quantum dots¹, defects in solids²

Absorption followed by emission (or vice versa) via virtual state

-
- 1. Y. G. Semenov and K. W. Kim, Phys. Rev. B 75, 195342 (2007) 2. S. A. Egorov and J. L. Skinner, J. Chem. Phys. 103, 1533 (1995) 3. S. Roychoudhari, S. Sanvito, PRB, 98, 125204 (2018)

 \triangleright Updated: adapted from crystals³, same SOC as γ

Target: 1st-principles spin dynamics in **realistic molecular semi-conductor** models

ITN SEPOMO | NWE4 Mons, Belgium - Erik R. McNellis

Target: 1st-principles spin dynamics in **realistic molecular semi-conductor** models

ITN SEPOMO | NWE4 Mons, Belgium - Erik R. McNellis

VOTCA-STP

‣ Our approach: spin-dynamics **on top** of multi-scale charge-dynamics

VOTCA-CTP1:

- ‣ Hopping charge transport in soft matter
- \triangleright MD, Marcus theory \rightarrow thermal effects

1. V. Rühle, A. Lukyanov, F. May et al, J. Chem. Theory Comput. 7, 3335 (2011) 2. Z. G. Yu, F. Ding and H. Wang, Phys. Rev. B 87, 205446 (2013) 3. U. Chopra, S. Shambhawi,…, and ERM, Adv. Func. Mater. (submitted) 4. I. Rudra, Q. Wu, T. Van Voorhis, Inorg. Chem. 46, 10539 (2007)

VOTCA-STP

‣ Our approach: spin-dynamics **on top** of multi-scale charge-dynamics

VOTCA-CTP1:

- ‣ Hopping charge transport in soft matter
- \triangleright MD, Marcus theory \rightarrow thermal effects

'VOTCA-**STP**':

- ► Separate spin dynamics KMC loop
- ‣ Single-site mechanisms:
	- ‣ hyperfine field2 / *g*-tensor
	- ‣ thermal relaxation
- ‣ Two-site mechanisms:
	- \triangleright spin-flip at hop (rate from γ^3)
	- \blacktriangleright spin exchange⁴
	- ▶ spin dipole

VOTCA-CTP + Spin Dynamics

1. V. Rühle, A. Lukyanov, F. May et al, J. Chem. Theory Comput. 7, 3335 (2011)

- 2. Z. G. Yu, F. Ding and H. Wang, Phys. Rev. B 87, 205446 (2013)
- 3. U. Chopra, S. Shambhawi,…, and ERM, Adv. Func. Mater. (submitted)
- 4. I. Rudra, Q. Wu, T. Van Voorhis, Inorg. Chem. 46, 10539 (2007)

VOTCA-STP Spin Dynamics Concept

- ‣ Material model randomly seeded with charges
- ▶ Changes in spin polarization monitored as charges move
- ‣ **Explicit link** between chargeand spin-dynamics
- ‣ Allows for **unprecedented inference** of one from the other

Spin Polarization Change, Current

*T*1 Spin Relaxation Time in Bulk Alq3

- \triangleright Proof of concept: bulk Alq₃ longitudinal spin relaxation time
- ‣ Amorphous bulk model: 4096 molecule cell, periodic boundary conditions, monopolaronic transport approximation

*T*1 Spin Relaxation Time in Bulk Alq3

- \triangleright Proof of concept: bulk Alq₃ longitudinal spin relaxation time
- ‣ Amorphous bulk model: 4096 molecule cell, periodic boundary conditions, monopolaronic transport approximation

*T*1 Spin Relaxation Time in Bulk Alq3

- \triangleright Proof of concept: bulk Alq₃ longitudinal spin relaxation time
- ‣ Amorphous bulk model: 4096 molecule cell, periodic boundary conditions, monopolaronic transport approximation
- ‣ Single molecular dynamics snapshot from glassy phase of bulk Alq3
- ‣ Large internal variations in molecular …
	- internal geometry
	- \triangleright density
	- \blacktriangleright relative orientation
- ... lead to large variations in
	- ‣ single molecule SOC
	- ‣ local hyperfine fields
	- ‣ current density
- 1. V. Rühle, A. Lukyanov, F. May et al, J. Chem. Theory Comput. 7, 3335 (2011)

current density isocontour1

ITN SEPOMO | NWE4 Mons, Belgium - Erik R. McNellis 22

1e21

• thermal relaxation negligible

‣ With **no exchange**, 'hockey-stick' T_1 shape:

- ► HFI and hop-flipping interfere, slowing T_1
- ‣ Charge hopping blocked as concentration increases, slower HFI relaxation dominates

 \triangleright Proof of concept: bulk Alq₃ longitudinal spin relaxation time

boundary conditions, monopolaronic transport approximation

300

‣ Amorphous bulk model: 4096 molecule cell, periodic

*T*1 Spin Relaxation Time in Bulk Alq3

ITN SEPOMO | NWE4 Mons, Belgium - Erik R. McNellis 22

‣ With **exchange included,** large speedup in high concentration regime

- ‣ Due to relaxation **traps**:
- ‣ Exchange-mediated spin diffusion enhances access to fast relaxation sites
- ‣ Complex balance of effects

- \triangleright Proof of concept: bulk Alq₃ longitudinal spin relaxation time
- ‣ Amorphous bulk model: 4096 molecule cell, periodic boundary conditions, monopolaronic transport approximation

*T*1 Spin Relaxation Time in Bulk Alq3

Summary

- ‣ Fully first-principles modeling of molecular and organic semi-conductor materials **possible**
- ‣ Theoretical modeling offers **otherwise unattainable** insights through
	- ‣ **versatility** at all scales
	- ‣ **complementarity** to experiment
- ‣ Models highlight **complexity** of molecular spin dynamics - exciting!
- ‣ Still plenty of work to do to raise
	- **accuracy**
	- **•** transferability
	- ‣ scalability
- ‣ … of current methods

Summary

- ‣ Fully first-principles modeling of molecular and organic semi-conductor materials **possible**
- ‣ Theoretical modeling offers **otherwise unattainable** insights through
	- ‣ **versatility** at all scales
	- ‣ **complementarity** to experiment
- ‣ Models highlight **complexity** of molecular spin dynamics - exciting!
- ‣ Still plenty of work to do to raise
	- **accuracy**
	- **•** transferability
	- ‣ scalability
- ‣ … of current methods

Thank You!

